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INTRODUCTION

The spectral analysis enables us to divide a given time series into 
components characterised by a different frequency of fluctuations. Therefore, 
it is possible to use it for the extraction of the cyclical component from 
macroeconomic data. The most popular method of analysing components 
with a specific frequency is the use of the Hodrick-Prescott, Baxter-King and 
Christiano-Fitzgerald filters. Each of these filters differs in structure and has 
its own advantages and disadvantages.

The subject of this paper is the presentation of the general idea of the 
spectral analysis and the details of the construction of Hodrick-Prescott, 
Baxter-King and Christiano-Fitzgerald filters. Then all the three filters will 
be applied to real GDP time series of Poland and Greece. First, to compare 
their effects, and then to determine the conditions under which the filter 
works the most effectively.

The first part of the paper presents the spectral analysis and the 
construction details of the Hodrick-Prescott, Baxter-King and Christiano-
Fitzgerald filters. The second part presents the results of empirical studies 
on the example of Poland and Greece, on the basis of which the difference 
in the results obtained with the use of different filters is shown.

* Krzysztof Beck – Ph.D., Lazarski University in Warsaw, Faculty of Economics and 
Management, beckkrzysztof@gmail.com
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1. SPECTRAL ANALYSIS

This section will first present the general idea of the spectral analysis, 
followed by three most popular filters operating in the frequency domain: of 
Hodrick-Prescott (HP), Baxter-King (BK) and Christiano-Fitzgerald (CF). 
The first point was primarily prepared on the basis of works of Hodrick and 
Prescott1, King and Rebelo2, Baxter and King3 and Christiano and Fitzgerald4.

1.1. The idea of Spectral analysis

In the spectral analysis it is assumed that a given time series consists of 
components that periodically oscillate at different frequencies5. In this case, 
one can think of a time series as consisting of a sum of periodic functions. For 
this purpose, the sine and cosine functions shown in panel a) of Figure 1 are 
used. These functions are periodic, which means that sin (t) = sin (t + 2πh), 
for h = 1, 2, …, and therefore, they regularly repeat their form. By giving 
these functions appropriate coefficients it is possible to change the amplitude 
of their fluctuations as shown in panel b). In addition, adding a factor to 
the function argument changes the periodicity of the function – the greater 
its value, the more frequently the periodic repetitions occur. The idea of 
the period change is shown in panel c). It is also worth adding that the sine 
and cosine functions are characterised by the same period and amplitude, 
but they differ from each other by the phase shift, which makes them pass 
through the same cycle elements at different moments. Finally, summing 
the sine and cosine functions with different coefficients and periodicities, 
it is possible to model cyclical fluctuations with very different periodicity, 
variability and amplitude, as shown in panel d). When combining the sine 

1  Hodrick, R.R., Prescott, E. 1997, Postwar U.S. Business Cycles: An Empirical 
Investigation. Journal of Money, Credit, and Banking, vol. 29, no. 1, pp. 1–16.

2  King, R., Rebelo, S. 1993. Low Frequency Filtering and Real business Cycles. Journal 
of Economic Dynamics and Control, no. 17, North-Holland, pp. 207–231.

3  Baxter, M., King, R. 1999. Measuring Business cycles: Approximate Band-Pass Filters 
for Economic Time Series. The Review of Economics and Statistics, vol. 81, no. 4, 
pp. 575–593.

4  Christiano, L., Fitzgerald, T. 1998. The Business Cycle: It’s Still a Puzzle. Federal 
Reserve Bank of Chicago Economic Perspectives, vol. 22, no. 4, pp. 56–83; Christiano, L., 
Fitzgerald, T. 2003. The Band Pass filter. International Economic Review, vol. 44, no. 2, 
435–465.

5  More on the topic of spectral analysis can be found in Hamilton, J. 1994. Time Series 
Analysis. Princeton, New Jersey: Princeton University Press.
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and cosine functions with different periodicity their weights in the resulting 
function depend on the absolute value of their parameters.

When we consider the functions in the following form:

 sin (tω) oraz cos (tω), t = 1, 2, … (1)

the oscillation period is expressed in units of time, and frequency ω determines 
after how many units of time there will be a full period – after what amount 
of time the increase by 2π will occur. Assuming there are two points in time t1 
and t2 in the same phase of the cycle, we can write: t2ω – t1ω = 2π, and after 
dividing both sides of the equation by frequency ω we get: t2 –  t1 = 2π/ω. 
Thus, in the case of the function sin (tω) and cos (tω) the period of oscillation 
in time units is 2π/ω, and therefore the parameter ω is referred to as the 
frequency of oscillation.

Figure 1
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With the above information it is possible to present the basic idea of 
the spectral analysis. Assuming that there is a time series yt, t = 1, 2, T, 
where T is an even number, it is possible to decompose it into T/2 of possible 
periodic functions, each of which is characterised by a different frequency of 
fluctuations ω. Let ωj = 2πj/T, for j = 1, 2, …, T/2 and aj and bj for j = 1, 2, 
…, T/2 denote parameters of the cosine and sine functions. Then it is possible 
to write the time series yt in the form6:

 yt = a1cos(tω1) + b1sin(tω1) + … + aT/2cos(tωT/2) + bT/2sin(tωT/2) (2)

It is possible to find all the parameters of aj and bj for j = 1, 2, …, T/2 of 
this equation using OLS. When the TxT/2 matrix of explanatory variables X, 
the vector T x 1 of the explanatory variables Y and the vector T x 1 of the 
regression coefficients are given by:
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 (3)

the regression equation is given by:

 Y = Xβ + ε. (4)

Due to the fact that the number of explanatory variables is T, the residual 
is 0, and then β can be calculated as X X X Y X Y

1 1
=

- -l l^ h . Obviously, the 
calculation of the parameters is only possible in theory. It results from the 
fact that since the amount of all potential frequencies is infinite we would 
also need an infinite number of observations for the exact calculation, which 
is by no means possible. Because of this problem in the spectral analysis, 
equation (2) is transformed into the following integral:

 ( ) ( ) ( ) ( ) ,cos siny a t b t dt
0

~ ~ ~ ~ ~+
r
6 @#  (5)

where a(ω) and b(ω) are functions of ω. Every weakly stationary process 
can be expressed by an equation7 (5). This equation allows us to show the 

6 Christiano, L., Fitzgerald, T. 1998, op. cit.
7 Koopmans, L. 1974. The Spectral Analysis of Time Series. New York: Academic Press.
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time series yt as the sum of the components oscillating between 2π/ω for ω 
belonging to the range [0, π].

1.2. Hodrick-Prescott filter

The filter constructed by Hodrick and Prescott8 (HP) methodologically 
corresponds to the Lucas’s definition of the business cycle, which defines 
cyclical fluctuations as deviations from the trend9. Initially, the authors 
developed this filter in the time domain, therefore, in the considerations 
in this section the perspective of time is adopted. Because the HP filter is 
a high-pass filter, in the frequency domain is also described when discussing 
the Baxter-King band pass filter. The starting point is the assumption that 
the real GDP time series consists of two components:

 Yt = YCt + YNt dla t = 1, 2, …, T, (6)

where YCt is the cyclical component of GDP in period t, and YNt – the trend 
value in period t. This means that the filter ignores the seasonal component 
that has to be removed in a separate procedure.

The application of the Lucas definitions for the HP filter takes place by 
finding the solution to the following mathematical programming problem:

 .
min

Y
Y Y Y Y Y Y

Nt
t Nt

t

T

Nt Nt

t

T

Nt Nt

1

1

1

2
1

2m- + - - -
=

+

=

-^ ^ ^h h h6 @' 1/ /  (7)

Hodrick-Prescott filter takes the sum of the squares of the second 
differences of the time series as the criterion of smoothness. λ is a positive 
parameter penalising variance in the second differences. When λ → ∞, the 
solution to the problem approaches the OLS estimation. YCt = Yt – YNt is 
a cyclical component and it is assumed that its expected value tends to zero 
with the prolongation of the time sample. Due to its design, the HP filter 
can be considered a generalisation of the exponential smoothing procedures 
formulated by Brown10. It is worth noting that trend elimination techniques 

 8 Hodrick, R., Prescott, E., op. cit.
 9 Lucas, R. 1977. Understanding business cycle. In: Brunner, K., Meltzer, A. eds. 

Stabilization of the domestic and international economy. Amsterdam, North-Holland: 
Carnegie-Rochester conference Series on Public Policy, vol. 5, pp. 7–29.

10 Brown, R. 1962. Smoothing, Forecasting and Prediction of Discrete Time Series. New 
Jersey: Prentice-Hall.
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very similar to the Hodrick-Prescott filter were previously used in actuarial 
and ballistic sciences11.

Assuming that the cyclical components and the second differences of 
the series are independent with identical distributions with zero mean and 
variances amounting respectively to c

2v  and Y

2

t
2vT , the parameter penalising

variance is given by: YC C Y
2 2

t t
2 2)m v v m v v= =T T . The variance penalising

parameter is the only part of the filter that needs to be determined by 
the researcher. Hodrick and Prescott assumed that the moderate cyclical 
component had a variation of about 5% while the second difference of only 
(1/8)%. On this basis, they propose /5 1 8 40 1600"m m= = =^ h  as the 
optimal value of the penalising parameter for the quarterly data.

The value of the parameter λ = 1600 was developed for quarterly data 
and is a value that has gained widespread acceptance in both economic and 
econometric literature. However, the problem arises when it is necessary to 
specify the parameter for annual data. Then Hodrick and Prescott propose 
λ = 100, which was accepted in the study of Backus and Kehoe12. Rawn and 
Uhlig13 argue that for a better comparison with the results for quarterly 
data, the value of λ should amount to 6.25, while Cooley and Ohanian14 and 
Correia, Neves, and Rebelo15 suggest that this figure is equal to 400. In turn, 
Baxter and King16 opt for a value of 10 for λ.

The cyclical component obtained with the HP filter can be also represented 
as a moving average17:
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where L is the polynomial lag operator. In addition, when T → ∞ the solution 
(7) can be found in the frequency domain. King and Rebelo showed that in 

11 Stigler, S. 1978. Mathematical statistics in the Early States. Annals of Statistics, vol. 6, 
pp. 239–265.

12 Backus, D., Kehoe, P. 1992. International Evidence of the Historical Properties of 
Business Cycles. American Economic Review, vol. 82, no. 4, pp. 864–888.

13 Ravn, M., Uhlig, H. 2002. On adjusting the Hodrick-Prescott filter for the frequency 
of observations. Review of Economics and Statistics, vol. 84, no. 2, pp. 371–380.

14 Cooley, T., Ohanian, L. 1991. The Cyclical Behavior of Prices. Journal of Monetary 
Economics, vol. 28, no. 1, pp. 25–60.

15 Correia, I., Neves, J., Rebelo, S. 1992. Business cycle from 1850-1950: New Facts about 
Old Data. European Economic Review, vol. 36, pp. 459–467.

16 Baxter, M., King. R., op. cit.
17 King, R., Rebelo, S., op. cit.
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such a situation the expression for the frequency response function (ψ(ω)) 
can be expressed as:

 ( )
( )
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The weight (γj) in the moving average for the HP filter can be determined 
by using the inverse Fourier transformation:
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The HP filter is a high-pass filter that passes only a component that 
is characterised by the frequency of fluctuation above limit value χ. The 
relationship between the cut-off frequency and the value of parameter λ can 
be determined using equation (9) and is given by18:
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The HP filter is a filter that passes this part of the fluctuation band that 
is above cut-off frequency χ. The details of the operation of high-pass filters 
are presented in section 1.3. However, at this stage one may notice that the 
HP filter treats the seasonal and cyclical components equally. This means that 
this filter, in order to obtain a cyclical component, should be applied only to 
data from which the seasonal component has been removed.

1.3. Baxter-King filter

The second most popular method of extracting the cyclical component 
and the trend from macroeconomic data is the Baxter and King19 (BK) 
filter. This filter (and the Christiano-Fitzgerald filter) is a methodological 
equivalent of Burns and Mitchell’s business cycle definition, according to 
which these are fluctuations within a certain frequency band – over one year 
and less than ten or twelve years20. The idea of the filter is based on a moving 
average. If the moving average is used for a series of real GDP, Yt, then a new 
time series will be produced:

18 Kowal, P. 2005. Optimal filtering. Available at: https://ideas.repec.org/s/wpa/wuwppr.html.
19 Baxter, M., King, R., op. cit.
20 Burns, A., Mitchell, W. 1946. Measuring business cycles. New York: NBER.
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 ,Y a Y
*
t k

k K

K

t k=
= -

-/  (12)

where k is the number of lags, ak is the weight for the value of real GDP 
delayed by k periods. The moving average can also be expressed using 
a polynomial lag operator L:

 ( ) ,a L a Lk

k K

K
k

=
= -

/  (13)

and then: LKyk = yt–k. If the average is symmetric then: ak = a–k for k = 1, 
2, …, K. Baxter and King prove that when the moving average weights add 
up to zero:

 ,a 0h

h K

K

=
= -

/  (14)

then the moving average guarantees the stationarity of the series irrespective of 
whether the output series is characterised by a deterministic or stochastic trend.

If a series is stationary with an average of 0, then it can be expressed by 
the Cramer representation as follows:

 ( ) .Y dt p ~ ~=
r

r

-
#  (15)

Thus, the representation of a series is an integral of random periodic 
components, where:

 ,EV dla01 2 1 2!p ~ p ~ ~ ~=l^ ^h h6 @" ,  (16)

and ω is a specific frequency. The filtered series can be written down as:

 ( ) ( ) ,Y d
*
t a ~ p ~ ~=

r

r

-
#  (17)

where:

 ( ) a eh

h K

K
i ha ~ =
~

= -

-/  (18)

is a frequency-response function of the linear filter, and on the basis of (16) it 
can be shown that the variance of the filtered series is given by the following 
formula:
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 ( ) ( ) .VAR Y f d
*
t y

2a ~ ~ ~=
r

r

-
^ h 6 @#  (19)

[α(ω)]2 is a transfer (squared gain) function of the linear filter for frequency ω, 
while fy(ω) = VAR[ξ(ω)] is the spectral density for series y of frequency ω. 
The response frequency function is zero for ω = 0 (for frequency 0) only 
when the sum of the filter weights is zero:

 ( ) .a e a0 0h

h K

K
i h

k

k K

K

)a ~ = = =
~

= -

-

= -

/ /  (20)

The BK filter is a band pass filter. Before describing its operation, it is 
worth analysing the case of a simpler low pass (LP) filter, this filter passes 
only a ‘slowly moving’ part of the data – below a specified frequency.

The ideal symmetrical LP filter, which passes only frequencies from the 
range # #~ ~ ~

5 5
, has a frequency response function β(ω) = 1 for # ~~

5

and β(ω) = 0 for 2 ~~
5

 where ~
5

 is the cut-off frequency. Symmetrical

weights also imply that β(ω) = β(–ω). The representation of the ideal low 
pass filter in the time domain is:

 ( ) ,b L b Lh

h

h
=

3

3

= -

/  (21)

where bh denotes weights. These weights can be calculated using the inverse 
Fourier transformation for the following frequency function:

 ( ) .b e d
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1
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i h

r
b ~ ~=
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-

-#  (22)

Baxter and King21 proved that:
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sin
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h

h
dla h 1 2h0 / f
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5 5  (23)

This ideal low pass filter can only work when h = ∞. Therefore, Baxter and
King propose approximation using a finite moving average ( )a L a Lhh K

K H
=

= -
/

for which the frequency-response function is given by ( ) a e
i h

hh K

K

Ka ~ =
~-

= -
/  .

In order to choose the optimum approximation of the ideal filter, we need 
to choose the weights ah to minimize the following expression:

21 Baxter, M., King, R., op. cit.
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 ( ) ,Q d
2

1 2

r
d ~ ~=

r

r

-
6 @#  (24)

where ( ) ( ) ( )Kd ~ b ~ a ~= -  is a discrepancy resulting from the 
approximation for frequency ω. The optimal approximation of the ideal filter 
for K lags is achieved by by simply truncating the ideal filter’s weights bh at 
lag K. Therefore, the optimum low pass filter gives ah = bh for h = 0, 1, 2, 
…, K and for ah = 0. Weights bh are given by (22).

In an analogous way, the ideal high pass filter (HPass) and its approximation 
can be constructed. This filter would only pass a ‘fast-moving’ part of the 
time series – above a specified frequency. The ideal HPass filter would be 
characterised by frequency-response function γh. We can obtain weights ch 
for this filter in a similar way. In this way, a high-pass filter can be described 
in the frequency domain. Knowing the form of ideal and approximate high 
and low pass filters, and the resulting weights, it is possible to construct the 
Baxter-King (BK) band pass filter.

The ideal band pass filter only passes frequencies from the specified
range: # #~ ~ ~

?

5
, where ~

5
 is the cut-off frequency of the LP filter,

while ~
?

 is the cu-toff frequency of the HPass filter. The frequency-response 
function for the BK filter is given by ( ) ( )c ~ b ~-  and assumes a value of 1

for # #~ ~ ~
?

5
 and 0 for all other frequencies. Weights of approximation

to the ideal band pass filter – when tuned due to the number of lags and leads 
of the Baxter-King filter – are given by ch – bh. So the BK can be expressed as:

 ( ) .BK L c b Lh h

h K

K
h

= -
= -

^ h/  (25)

The BK filter requires the introduction of K lags and leads, which means 
that 2K observations are lost. Yet, with the increase in the number of lags 
and leads, the approximation (of the ideal filter) obtained with the BK filter 
is better. However, this is done at the expense of losing observations. Baxter 
and King experimented with different levels of K tuning and concluded that 
12 is optimum for quarterly data, while 3 is for annual data. This is the same 
number of lags and leads that should be removed from the Hodrick-Prescott 
filter to avoid untypical results observed by Baxter and King at the beginning 
and end of the filtered series.

It is worth showing the relationship between periodicity and frequency. 
The relationship is described by p or f = 2 π/ω, where p or f denotes one 
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period – a quarter/year. p and f define cut-off frequencies (and corresponding 
periods) between those passed and retained by the filter. Therefore, the use 
of the BK filter requires the specification of the cut-off frequencies. The 
filter will stop a component belonging to a given frequency band as a cyclical 
component, or else – a component with a certain periodicity.

There is another element of the BK filter that deserves to be emphasised. 
As mentioned earlier, BK filter is characterised by weights that add up to 
zero, which guarantees stationarity of the obtained cyclical component. In 
addition, BK is a symmetric filter ( ) ( )b ~ b ~= -^ h, which in turn guarantees 
the removal of both linear and quadratic trend from the time series. The use 
of symmetrical weights has yet another advantage, namely the lack of the 
phase shift. For these reasons, the BK filter can be easily applied to a wide 
range of macroeconomic time series.

1.4. Christiano-Fitzgerald filter

Christiano and Fitzgerald22, just like Baxter and King, tried to find the 
optimal approximation of the ideal filter. The authors assumed that a given 
stochastic process yt could be divided into two parts:

 ,y y y
*

t t t- + u  (26)

where process y
*
t  contains only this part of frequencies that fall within the

range , , ,, d~ ~ ~ ~ r r- - -c c ^m m h' 1
? C

5 5
, while ỹt only the components out

of that range, where 0 < # #~ ~ r
?

5
.

For example, following Christiano and Fitzgerald23, the cyclical GDP 
component is in the fluctuation band between 1.5 and 8 years. In the 
terminology of fluctuation frequencies for quarterly data, it can be written

that it is a fraction ω within the range between /2 32~ r=
5

 and /2 6~ r=
?

 .

Referring to equation (5), we look for the cyclical component of series yt 
given by:

 ( ) ( ) ( ) ( ) .cos siny a t b t d
*
t ~ ~ ~ ~ ~= +

~

~
6 @

?

5

#  (27)

22 Christiano, L., Fitzgerald, T. 2003, op. cit.
23 Christiano, L., Fitzgerald, T. 1998, op. cit.
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Searching for a part of the series located in the above-described frequency 
band, the authors suggest the use of the ideal filter given by24:

 ( ),y B L
*
t =  (28)

where ( ) ,B L B L L y yjj

j t
t t 1/=

3

3

= - -/ . For this specification B e 1
i

=
~-

^ h , for

, ,d ,~ ~ ~ ~ ~- -c cm m
? C

5 5
 and is equal to 0 for all others. In such a situation

0>~
5

 implies B(1) = 0. Once again there is a problem connected with the

fact that the ideal filter requires an infinite number of observations and thus 
an approximation is needed.

Christiano and Fitzgerald focused their attention on finding an optimal 
approximation of a series that can be treated as realization a random walk 
process. This means that if a given macroeconomic series exhibits other 
properties, it is necessary to bring the series to exactly such a form (e.g. 
by removing a drift or a deterministic trend). Using y

*
t
X as a symbol for the 

approximation of the ideal filter, we can write it as:

 ,y P y y
* *

= 6 @X  (29)

and then for each observation we can write: y P y y
* *
t t= 6 @X  for t = 1, …, T. 

Therefore, for each t the solution can be written as:

 ,y yB
* ,
t j

p f

j f

p
t j=

= - -
tX /  (30)

where: f = T – t and p = t – 1. In this case B
,

j
p ft  solves the problem of 

minimizing mean square errors:

 , ., ,
min

E y y yB j f p
, * *

j
p f

t t

2

f -= -t ` j8 BX  (31)

The above problem can be presented in the frequency domain as follows:

 , ( ) ,, ,
min

B e B e f dB j f p
, ,

j
p f i h

j
p f i h

y

2

f ~ ~-= -
~ ~

r

r
-

-

t t^ ^h h#  (32)

where fy(ω) is the spectral density of yt, while:

24 Sargent, T. 1987. Macroeconomic Theory, 2nd ed. London: Academic Press.
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= -

-
t t/  (33)

When series yt is a random walk, one can find y
*
t
X using a moving average 

of the observations:
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for t = 3, 4, …, T – 2, where weights are given by:
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If a given time series has the following representation:

 ( ) ,y y L E 1t t t t1

2/i f f= + =-
 (37)

where θ(L) is the polynomial of degree q for lag operator L, then the spectral 
density function for yt takes the form:
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The solution is given by25:

 ,B A d
,p f 1

=
-t  (40)

25 The detailed calculation can be found in Christiano, L., Fitzgerald, T. 2003, op. cit., 
pp. 443–446.
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and:
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while , , , , , , .c c c c c cq q q q1 0 1f f= - -6 @

The above-mentioned solutions point to several significant aspects of the 
Christiano-Fitzgerald filter (CF). First, the CF filter is not symmetrical, which 
means that it uses the information contained in all observations to calculate 
values of the cyclical component for all periods. This allows the filter to 
produce cyclical values for all analysed periods. Unfortunately, due to using 
asymmetric weights, the filter does not have the trend removal properties. 
However, Christiano and Fitzgerald26 show that the use of the filter for 
a series with other stochastic properties than those presented above leads to 
very small losses in the approximation of the ideal filter. A bigger problem 
is that the use of asymmetric weights can lead to phase shifts. It is possible 
to modify the filter to ensure symmetry of weights, but a result of such 
a procedure is the loss of data at the start and end of the analysed time series.

1.5. Filter comparison

The HP is a high-pass filter. This means that a researcher interested 
in a  cyclical component of a time series should apply it only to seasonally 

26 Christiano, L., Fitzgerald, T. 2003, op. cit.
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adjusted data. On the other hand, this condition is not required when the 
researcher is interested in a trend analysis. An advantage of this filter is 
that it does not lead to the loss of observations, but the observations at the 
beginning and the end of the filtered series behave in an unusual manner, 
which may lead to their rejection. This problem is particularly important when 
the researcher is interested in analysing the relationships that have taken 
place in the ‘near past’, which is essential for formulating recommendations 
for current economic policy. Last but not least, a great advantage of the 
HP filter is its significant popularity in applications that allow for broad 
comparability of results.

The BK and CF are band pass filters. The differences between these filters 
result from the very approach to the problem of minimizing the differences 
between the approximation and the ideal filter. In the case of the BK the mean

square error B e B e
,

j

p p i h i h 2

-
~ ~- -t ^ ^` h h j is minimized, while CF minimizes the

average square error weighted by the spectral density of the analysed series

( )B e B e f
,i h

j

p f i h

y

2

~-
~ ~- -t^ ^` h h j. In addition, Baxter and King made conditional

optimization by imposing a constraint ( )B 1 0
,

j

p p
=t  that is absent in the work

of Christiano and Fitzgerald. Due to the use of the constraint it is possible 
to remove the trend from the analysed series. Moreover, the CF filter uses 
all observations, so the filter is naturally asymmetrical. The symmetrical BK 
filter requires the abandonment of an equal number of observations at the 
start and end of the analysed time series. On the other hand, the symmetry 
of the BK guarantees no phase shift that is present in the case of the CF.

Due to these differences the BK and CF filters work better in different 
applications. Where the researcher wants to obtain the results that are not 
phase shifted and with the stationary cyclical component, it is recommended 
to use the BK filter. In addition, this filter can be applied to a wide range of 
series, which is an extraordinary advantage, especially when the stochastic 
properties of the analysed series cannot be clearly determined. In such 
a situation, the researcher must accept the loss of observation at the end and 
beginning of the analysed sample. This problem is absent in the case of CF 
filter, which also gives a better approximation of the ideal filter. Unfortunately, 
at the expense of a better approximation there is the possibility of phase shifts 
and the lack of properties removing the trend from the data. Therefore, this 
filter is best used when the properties of the time series are known and the 
proper transformation has been made on that basis.
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2. RESULTS OF THE APPLICATION OF THE FILTERS

This section presents the results of the application of spectral analysis 
to decompose GDP of European countries. The first subsection presents 
the used data and the properties of the time series. The second subsection 
compares the results obtained by means of using the three filters to seasonally 
adjusted and not adjusted data on the example of Greece and Poland.

2.1. Source of data and properties of time series

The study was conducted on the example of Poland and Greece. The 
study uses quarterly data on nominal GDP (in millions of euro) and price 
levels (2010 = 100) coming from Eurostat and covers the period from the 
first quarter of 2002 to the first quarter of 2016. Subsequently, the nominal 
GDP data were divided by the price level data to obtain the series of real 
GDP. The real GDP series is the subject of all presented analyses. The study 
used series containing the seasonal component as well as those from which 
the seasonal component was removed using X-13 ARIMA

The use of the CF filter requires knowledge of the stochastic properties of 
the analysed time series. Therefore, prior to filtration all series were subjected 
to the following unit root tests: ADF27 (Augmented Dickey-Fuller test28) and 
KPSS29 (Kwiatkowski-Phillips-Shmidt-Shin test). In both cases, the version of 
the test with the intercept (α) and the intercept and the linear trend (α + βt) 
was used to determine whether the trend in the data is stochastic  (S) or 
deterministic (D). When the inclusion of a deterministic trend causes the 
elimination of the unit root, following Nelson and Plosser30 the trend is 
classified as deterministic. Otherwise, the hypothesis of the stochastic trend 
and the occurrence of the drift was accepted. The results of applying the test 

27 More on this test can be found in Stadnytska, T. 2010. Deterministic or Stochastic 
Trend. Decision on the Basis of the Augmented Dickey-Fuller Test. Methodology, 
vol. 6, no. 2, pp. 83–92.

28 Said, E., Dickey, D. 1984. Testing for Unit Roots in Autoregressive Moving Average 
Models of Unknown Order. Biometrika, vol. 71, no. 3, pp. 599–607.

29 Kwiatkowski, D., Phillips, P., Schmidt, P., Shin, Y. 1992. Testing the Null Hypothesis 
of Stationarity against the Alternative of a Unit Root. Journal of Econometrics, 
no. 54(1 – 3), pp. 159–178.

30 Nelson, C., Plosser, C. 1989. Trends and Random Walks in Macroeconomic Time 
Series. Some Evidence and Implications. Journal of Monetary Economics, vol. 10, 
pp. 139–162.



KRZYSZTOF BECK56

to real GDP series with and without a seasonal component are demonstrated 
in Table 1.

Table 1
Results of ADF and KPSS tests for the time series of real GDP

of European countries

Country
WITH A SEASONAL COMPONENT AFTER THE ELIMINATION

OF THE SEASONAL COMPONENT
CFADF KPSS trend ADF KPSS trend

α α+βt α α+βt S D α α+βt α α+βt S D
Greece 0,671 0,442 I(1)** I(1)*** 2 0,954 0,413 I(1)** I(1)** 2 α
Poland 0,691 0,912 I(1)*** I(1)* 2 0,818 0,835 I(1)*** I(1)** 2 α

The table shows p-values for the ADF test (H0: unit root). For KPSS test (H0: stationarity): 
I(1)*, I(1)** and I(1)***, denotes the rejection of the null hypothesis respectively at the 
significance level: 0,1; 0,05 and 0,01. Abbreviations: A-ADF; K-KPSS; 2-ADF and KPSS; 
S – stochastic; D – deterministic; α – drift; βt – linear trend.

Source: own calculations on the basis of Eurostat data.

The decision on whether to remove the drift (α) or the linear trend 
(βt) from the data before the application of the CF filter was based on the 
dominant number of tests that indicated the given option. The results are 
presented in CF column.

Finally, all three filters were used. The HP filter with variance penalising 
parameter λ equal to 1600 was applied to data without the seasonal 
component. The BK and CF filters were applied to both seasonally adjusted 
and not adjusted data. In both cases, the cyclical component of real GDP was 
defined as having a frequency between six and thirty two quarters (1.5 years 
to 8 years). For the BK filter, 12 observations were removed at the beginning 
and at the end of the analysed time series, as recommended by Baxter and 
King31.

2.2.  Comparison of results obtained with the use of HP,
BK and CF filters

The results of applying the HP filter to the real GDP time series of Greece 
and Poland are shown in Figure 1. Panels a) and c) show real GDP values 
(black colour) and the trend (gray colour), while panels b) and d) represent 

31 Baxter, M., King, R., op. cit.
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the cyclical component. Values are expressed in hundreds of millions of euro 
from 2010.

Chart 1
Results of the application of the HP filter to the Greek and Polish

to seasonally adjusted real GDP time series.
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Source: own study on the basis of Eurostat data.

In Chart 1, it can be observed that in the case of Poland, the trend of GDP 
was characterised by an upward trend in the whole examined period. Poland 
was characterised by a relatively narrow band of cyclical fluctuations around 
the trend. The fall in GDP below the potential level from the second quarter 
of 2009 to the third quarter of 2010 and from the last quarter of 2012 to the 
end of 2014 is considered to be very low compared to the perturbations in the 
economies of other European countries. The case of Greece is significantly 
different from Poland. It can be seen that the decline in Greece’s GDP did 
not result only from cyclical fluctuations, but was also caused by the decline 
in potential GDP. This can be explained by hysteresis, and no significant 
improvement in the Greek economy should be expected in the near future.
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The above results were compared with results obtained on the basis of 
other filters. The BK filter was applied to the data with the seasonal component 
and to the seasonally adjusted data. The BK filter (like the CF) is a band pass 
filter. Thus, the result of using this filter is not a trend, but a non-cyclical 
component – the combination of a trend and a seasonal component. One 
way to obtain a better approximation of the trend by means of a non-cyclical 
component is the previous elimination of seasonal fluctuations. Charts 2 
and 3 illustrate the effect of the application of the BK filter to the real GDP 
time series of Poland and Greece.

Chart 2
Results of the application of the BK filter to the real GDP time series of Poland
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Source: own calculations on the basis of Eurostat data.
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Comparing the results for the seasonally adjusted and not adjusted data 
for the trend leads to two main conclusions. First, the non-cyclical component 
is much smoother in the case of the data that do not include the seasonal 
component – thus they are much better approximations of the trend. Secondly, 
the cyclical component in both cases looks almost identical. This means that 
the BK filter copes very well with the elimination of seasonal fluctuations. 
The filter was programmed to retain only part of the series with a frequency 
of more than 1.5 years, that is, a frequency lower than seasonal fluctuations.

Chart 3
Results of the application of the BK filter to the real GDP time series of Greece
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Source: own calculations on the basis of Eurostat data.

The application of the BK filter gave very similar results to those of the 
HP filter. The non-cyclical GDP component for Greece showed a declining 
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trend, while Poland’s GDP was characterised by a sustained increase of the 
non-cyclical component. On the other hand, the BK filter even for season-free 
data produces the non-cyclical component characterised by higher variability 
than in the case of the trend obtained as a result of the application of the 
HP. The opposite conclusion applies to the cyclical component that is much 
smoother than the results obtained with the BK filter. Unfortunately, the BK 
filter requires the removal of observations at the start and end of the analysed 
period. The biggest fluctuations are very similar to those obtained with the 
HP filter and are characterised by a phase shift not exceeding two quarters.

Chart 4
Results of the application of the CF filter to the time series of real GDP of Poland
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Source: own calculations on the basis of Eurostat data.
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The results of the application of the CF filter to the time series of Poland 
and Greece are presented in Charts 4 and 5. The results in relation to the non-
cyclical and cyclical component are the same as for the HP and the BK filters. 
The CF results for a non-cyclical component are characterised by higher 
variability than the HP trend, while cyclical fluctuations are smoother in the 
case of the CF filter. The phase shift again does not exceed two quarters. In 
the case of the CF filter the biggest differences are seen at the beginning and 
the end of the sample. This indicates that the use of the asymmetric moving 
average makes it possible to generate the full amount of observations, but 
the results at the beginning and the end of the sample are characterised by 
the greatest bias.

Chart 5
Results of the application of the CF filter to the time series of real GDP of Greece
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The last possible comparison is the exemplification of the results obtained 
with the BK and the CF filters. The non-cyclical components obtained by 
means of both filters show no significant differences. This is not the case for 
cyclical components that are smoother for the CF filter in the case of the data 
containing a seasonal component. On the other hand, cyclical components 
for the season-free data look almost identical. The conclusion is that the CF 
filter copes better than the BK filter with data not adjusted for seasonality.

CONCLUSION

The first part of this paper presents the idea of spectral analysis and 
Hodrick-Prescott, Baxter-King and Christiano-Fitzgerald filters. The HP 
filter is a high pass filter, while the BK and the CF are band pass filters, 
and that is why they should be used in different situations. In addition, the 
BK filter imposes additional constraints as compared to the CF filter. The 
effect of these constraints is the lack of phase shifts and the stationarity of 
the obtained cyclical components, however at the expense of the inferior 
approximation of the ideal filter and the loss of observation at the end and 
beginning of the analysed time series.

Empirical applications showed very little difference in the operation of 
the filters. In particular, they indicate that the results obtained for the BK 
and the CF filters do not differ significantly from each other and are similar 
regardless of whether they are used for seasonally adjusted and not seasonally 
adjusted data. Although the BK and the CF filters should efficiently separate 
the cyclical component from the seasonal one, they work better when filtered 
data is seasonally adjuted. In the case of not adjusted data data, they mix the 
cyclical component with the seasonal one.
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SPECTRAL ANALYSIS AND THE APPLICATION OF FILTERS
IN THE EXAMINATION OF BUSINESS CYCLES

Summary

The spectral analysis enables division of a given time series into 
components characterised by a different frequency of fluctuations. Therefore, 
it is possible to use it for the extraction of the cyclical component from 
macroeconomic data. The most popular method of analysing components 
with a specific frequency is the use of Hodrick-Prescott, Baxter-King and 
Christiano-Fitzgerald filters, which are the subject of this paper. Empirical 
applications showed very little difference in the operation of the filters. In 
particular, they indicate that the results obtained for the BK and the CF 
filters do not differ significantly from each other and are similar regardless 
of whether they are used for data containing the seasonal component or not. 
Although the BK and the CF filters should efficiently separate the cyclical 
component from the seasonal one, they work better when filtered data is 
seasonally adjusted. In the case of not adjusted data, they mix the cyclical 
component with the seasonal one.

ANALIZA SPEKTRALNA ORAZ ZASTOSOWANIE FILTRÓW
W BADANIU CYKLI KONIUNKTURALNYCH

Streszczenie

Analiza spektralna pozwala podzielić dany szereg czasowy na komponenty 
charakteryzujące się różną częstotliwością wahań. Z tego względu możli-
wym jest jej wykorzystanie do ekstrakcji komponentu cyklicznego z danych 
makroekonomicznych. Najbardziej popularną metodą analizy komponentów 
o określonej częstotliwości jest zastosowanie filtrów Hodricka-Prescotta (HP), 
Baxter-Kinga (BK) oraz Christiano-Fitzgeralda (CF), które są przedmiotem 
tego artykułu. Zastosowania empiryczne wykazały bardzo niewielkie różnice 
w działaniu filtrów. W szczególności wskazują one, że wyniki uzyskane dla 
filtru BK oraz CF nie różnią się znacznie między sobą, oraz są podobne 
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niezależnie od tego, czy zastosowano je dla danych zawierających komponent 
sezonowy czy danych oczyszczonych. Pomimo że filtry BK i CF powinny 
sprawnie oddzielać komponent cykliczny od sezonowego, działają one lepiej 
w sytuacji, gdy filtracji poddane są dane oczyszczone z komponentu sezo-
nowego. W przypadku danych nieoczyszczonych, mieszają one komponent 
cykliczny z sezonowym.

СПЕКТРАЛЬНЫЙ АНАЛИЗ И ПРИМЕНЕНИЕ ФИЛЬТРОВ
В ИССЛЕДОВАНИИ БИЗНЕС-ЦИКЛОВ

Резюме

Спектральный анализ позволяет произвести деление данных временных 
рядов на компоненты, для которых характерна различная частотность 
колебаний. По этой причине представляется возможным её использование 
с целью извлечения циклического компонента из макроэкономических 
данных. Наиболее популярным методом анализа компонентов с определённой 
частотностью является приме нение фильтров Ходрика-Прескотта (HP), 
Бакстера-Кинга (BK) и Кристиано-Фицджеральда (CF), которым посвящена 
данная статья. Эмпирические исследования их применения позволили 
выявить незначительные различия в действии фил ьтров. В частности, они 
показывают, что результаты, полученные для фильтра Бакстера-Кинга 
и Кристиано-Фицджеральда, различаются между собой в незначительной 
степени, и даже обладают сходством независимо от того, использованы ли 
они для данных с сезонным компонентом или очищенных данных. Несмотря 
на то, что фильтры Бакстера-Кинга и Кристиано-Фицджеральда должны 
чётко отделять циклический от сезонного компонента, они эффективнее 
действуют в ситуации, когда фильтрации подвержены данные, очищенные 
от сезонного компонента. В случае неочищенных данных, циклический 
компонент смешивается с сезонным.




